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The onset of instability in a liquid annular jet enclosing another fluid, and surrounded
by a gas in a pipe is analysed by use of a spectra-collocation method. The dynamic
responses to the variation of different flow parameters are elucidated by use of
numerical results. Two linearly independent convectively unstable interfacial modes
of disturbances are found. In general, the para-sinuous mode has a larger amplification
rate than the para-varicose mode. It is shown that to initiate encapsulation of core
fluid with a uniform shell fluid, the growth of the para-sinuous mode must be
promoted and the para-varicose mode must be suppressed. Suppression of the para-
varicose mode in a finite range of wavenumbers is possible by varying the flow
parameters. The effects of ten relevant parameters on instability are discussed. In
certain parameter space, the annular jet becomes absolutely unstable with respect to
the sinuous mode. The transition Weber number below which the flow is absolutely
unstable and above which the flow is convectively unstable is found as a function
of the Reynolds number when the rest of flow parameters are given. A successful
encapsulation of core fluid with a uniform shell fluid is possible if the process is
carried out outside of the parameter space of absolute instability, and if an external
forcing is introduced at a frequency within a band in which the para-varicose mode
is stable but the para-sinuous mode is convectively unstable.

1. Introduction
Annular jets are encountered in many industrial processes. Their stability has

been studied in the contexts of ink-jet printing (Hertz & Hermanrud 1983; Sanz &
Meseguer 1985), encapsulation (Kendall 1986; Lee & Wang 1989), gas absorption
(Baird & Davidson 1962), and atomization (Crapper, Dombowski & Pyott 1975; Lee
& Chen 1991; Shen & Li 1996). Shen & Li analysed the spatio-temporal instability of
an annular liquid jet surrounded by an inviscid gas. Hu & Joseph (1989) investigated
the temporal instability of a three-layered liquid core–annular flow. The annular jet
instability is also of considerable theoretical interest, since it includes many other
flow instabilities as special cases (Meyer & Weihs 1987). Moreover, it serves to
establish knowledge of the fluid physics of flows with two distinctive curved fluid–
fluid interfaces subjected to different shear forces, capillary forces, and inertial forces
under variable gravitational conditions.

The existing theoretical analyses of the present problem either neglect the viscosities
of the fluid surrounding the annulus or approximate the basic flows which do not
satisfy the governing equations exactly. Consequently, it is difficult to ascertain which
part of the results extracted from the theory is attributable to the approximation and
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which part of the results is genuinely physical. For example, the effects of gravity, gas
viscosity, and the difference in surface tension of the two interfaces are neglected in
the work of Shen & Li (1996). They found that the amplification rate increases with
the gas to liquid density ratio. However, this finding may not reflect a genuine effect
of densities, since density and dynamic viscosity are coupled. The latter is neglected in
their work. It turns out that when the gas viscosity is taken into account, the opposite
of their conclusion on the density effect is true, except when the surface tension
force is very small compared with the inertial force. Moreover, the existing theories
cannot produce precisely the onset of absolute instability which must be avoided for
a successful operation of encapsulation processes. To overcome this difficulty and to
ascertain the true physical effects of each of the ten flow parameters involved, we have
obtained a basic flow representing a liquid annular jet which satisfies the governing
equation exactly. The stability analysis of this basic flow with respect to temporal
as well as spatio-temporal disturbances are formulated in § 2. A spectral collocation
method which is described in § 3 is then used to obtain the numerical results. The
numerical results are then used in § 4 to elucidate the effects of all relevant flow
parameters. The practical implications of the finding are discussed in § 5.

2. Formulation
Consider the flow of a liquid in an annulus enclosing a gas, which is surrounded by

another gas inside a circular pipe of radius Rw as shown in figure 1. The axis of the
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pipe is aligned with the direction of the acceleration due to gravity g. Both gases and
the liquid are Newtonian. The governing equations of motion of the fluids, assumed
to be incompressible are

∂tV j + V j · ∇V j = − 1

ρj
∇ · σj , (1)

∇ · V j = 0 (j = 1, 2, 3), (2)

where j = 1, 2 and 3 designate the inner gas, the liquid, and the outer gas, respectively,
t is time, V is the velocity, ρ is the density and σ is the stress tensor. For Newtonian
fluids

σj = −P I + µj[∇V j) + (∇V j)
T ],

where P is the pressure, I is the identity matrix and µ is the dynamic viscosity.
The corresponding boundary conditions are the no-slip conditions at the pipe inner

wall, i.e.

V 3 = 0 at R = Rw, (3)

where R is the radial distance in the cylindrical coordinates (R, θ, Z); the continuity
of the velocity at each fluid–fluid interface, i.e.

V 1 = V 2 at R = Ri, (4)

V 2 = V 3 at R = Ro, (5)

where Ri and Ro are, respectively, the inner radius and outer radius of the annulus;
the kinematic conditions at the interface, i.e.

U1,3 = (∂t + V 1,3 · ∇)R at R = Ri or Ro, (6)

where U is the radial component of the velocity, and the subscript 1, followed by 3
after a comma designates either fluid 1 or fluid 3; the dynamic boundary condition
at the fluid–fluid interfaces,

(σ2 − σ1) · ni − ni · Si∇ · ni = 0 at R = Ri, (7)

(σ3 − σ2) · no − no · So∇ · no = 0 at R = Ro, (8)

where Si and So are, respectively, the surface tensions of the inner and the outer
interfaces, and ni and no are, respectively, the unit normal vectors of the interfaces
defined by

Fi = R − Ri = 0 and Fo = R − Ro = 0.

The unit normal vectors at the two interfaces are defined to be positive if they point
in a positive radial direction. Thus,

(ni, no) = (∇F/|∇Fi|, ∇Fo/|∇Fo|). (9)

We seek an axisymmetric non-swirling steady constant radius annular basic flow
which satisfies exactly the above governing equations and their boundary conditions.
For such a flow, the radial and azimuthal velocity components must vanish, and the
pressure differences across each fluid–fluid interface must balance exactly the surface
tension forces associated with the two different radii at any axial location at all
times. Thus, the axial dynamic pressure gradient in each fluid must be constant but
of different value, because of the different hydrostatic pressure experienced by each



238 J. N. Chen and S. P. Lin

fluid. It is easily verified that the governing equations (1) and (2) are reduced to

Nj

Re

1

r
∂r(r ∂rw̄j) = −Kj, (10)

Kj =

(
− 1

Qj
∂zp̄j − Fr−1

)
,

where r and z are the radial and axial distances normalized with the characteristic
length H , and w̄ is the axial velocity normalized with a reference velocity Wm. Both
H and Wm are yet to be chosen. p̄ = P/ρ2W

2
m is the dimensionless pressure, Re, Fr,

Nj and Qj are, respectively, the Reynolds number, the Froude number, the kinematic
viscosity ratio and the density ratio defined by

Re =
WmH

ν2

, Fr =
W 2

m

gH
, Nj =

νj

ν2

, Qj =
ρj

ρ2

.

ν being the kinematic viscosity.
Integration of (10) yields

w̄j = − Kj

4Nj

Re r2 + Cj1 ln r + Cj2, (11)

where Cj1 and Cj2 are integration constants determined by the boundary conditions
to be

C11 = 0,

C21 = (1− Q1)ReFr
−1 r2

i /2,

C31 = (Q3 − 1)ReFr−1 r2
o/(2Q3N3) + C21/(Q3N3),

C22 = (K2 −K3/N3)Re r
2
o/4 + (C31 − C21) ln ro + C32,

C12 = (K2 −K1/N1)Re r
2
i /4 + C21 ln ri + C22,

C32 = K3 Re r
2
w/(4N3)− C31 ln rw,

K1 = [K2 + (1− Q1)F
−1
r ]/Q1,

K3 = [K2 + (1− Q3)F
−1
r ]/Q3,

where K2 depends on the choice of the length scale H and the velocity reference
Wm. It is found that for better numerical accuracy, H and Wm should be chosen,
respectively, as the liquid shell thickness h, and the liquid velocity at r = 1

2
(ri + ro).

For this choice of normalization,

K2 = {−4 + ReF−1
r A1 − 4[C21 ln ((ri + ro)/2) + A2]}/Re[−(ri + ro)

2/4 + A3],

A1 = (Q−1
3 − 1)(r2

o + r2
w)/N3,

A2 = (C31 − C21) ln ro − C31 ln rw,

A3 = (1− Q−1
3 N−1

3 )r2
o + r2

w/Q3N3.

On the other hand, it is more expedient to normalize the length and velocity, respec-
tively, with the core gas radius and the core gas velocity along the pipe axis, for a
direct comparison with the known results of the axisymmetric Poiseuille flow and the
simple liquid jet. For this latter normalization (scaling I),

K2 = {−4 +ReF−1
r [(Q−1

1 − 1)r2
i /N1 +A1]− 4(C21 ln ri +A2)}/Re[(1−Q−1

1 N−1
1 )r2

i +A3].

A representative basic flow velocity distribution is given in figure 2.
To investigate the onset of instability in this basic flow we introduce disturbances to
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Figure 2. The effects of Froude number on the basic velocity profile, Re = 1000,
Q1 = Q3 = 0.0013, N̄1 = 0.018, N̄3 = 0.18, rt = 2, rw = 13.

the basic flow and analyse the spatio-temporal behaviour of the disturbance. Related
experiments (Kendall 1986) show that the consequence of instability is the formation
of axisymmetric compound drops, unless the Reynolds number is so high that non-
axisymmetric sprays may result (Lee & Chen 1991). We focus here on the formation
of axisymmetric compound drops, and assume the disturbance to be axisymmetric.
Hence, we write

(wj, uj , pj) = (w̄j + wj, u
′
j , p̄j + p′j), (12)

where prime quantities represent perturbations. The governing equations for the onset
of instability are obtained by substituting (12) into (1) and (2) and keeping only the
linear terms. Equation (2) allows us to relate the velocity perturbation to the Stokes
stream function ψ, i.e.

(u′j , w
′
j) =

1

r
(∂z,−∂r)ψ.

The curl of (1) written in terms of ψ is (cf. Drazin & Reid 1985),(
∂τ − Nj

Re
E2

)
E2 ψj + w̄jE

2 ∂zψj − r ∂r
(

1

r
∂rw̄j

)
∂zψj = 0, (13)

where τ is the dimensionless time τ = t/(Wm/h), and

E2 = ∂rr − 1

r
∂r + ∂zz.

Although the pressure does not appear in the governing equation (13), it remains in
the dynamic boundary conditions at the interfaces which are displaced by amounts
(ηi, ηo) where the subscripts i and o again stand for the inner and outer interfaces,
respectively. We seek the normal mode solution of the governing differential system,
and express the perturbation as

[ψj, pj , ηi, ηo] = [φj(r), ζj(r), ξi, ξo] exp[ikz + ωτ],

where k = kr + iki and ω = ωr + iωi are respectively the complex wavenumber and
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the complex wave frequency of the disturbance. The real part of the wavenumber kr
is related to the wavelength λ by kr = 2πh/λ. The corresponding frequency is ωi. The
terms ωr and ki give, respectively, the temporal and spatial growth rates. In terms of
the perturbation amplitude functions, (13) can be written as(

ω − Nj

Re
E2

1

)
E2

1φj + ikw̄jE
2
1φj − ikrD

(
1

r
Dw̄j

)
φj = 0, (14)

E2
1 =

d2

dr2
− 1

r

d

dr
− k2, D =

d

dr
.

The boundary conditions corresponding to (3)–(8) written out in cylindrical compo-
nents in the same order are

φ3(rw) = 0, (15)

Dφ3(rw) = 0, (16)

φ1,3(ri,o) = φ2(ri,o), (17)

1

ri,o
[Dφ1,3(ri,o)−Dφ2(ri,o)] = [Dw̄1,3(ri,o)−Dw̄2(ri,o)]ξi,o, (18)

ik

rio
φ1,3(ri,o) = [ω + w̄1,3(ri,o)]ξi,o, (19)

Q1,3N1,3E
−2φ1,3(ri,o)− E−2φ2(ri,o) = ξi,o[Q1,3N1,3D

2w̄1,3(ri, ro)−D2w̄2(ri,o)], (20)

Q1,3[ω + ikw̄1,3(ri,o)]Eφ1,3(ri,o)− [ω + ikw̄(ri,o)]Dφ2(ri,o)

−ik[Dw̄1,3(ri,o)φ1,3(ri,o)−Dw̄2(ri,o)− φ2(ri,o)]

+
1

Re

{[
Lφ2(r̄i,o)− 2k2

(
Dφ2(ri,o)− 1

ri,o
φ2(ri,o)

)]

−Q1,3N1,3

[
Lφ1,3(ri,o)− 2k2Dφ1,3

(
ri,o − 1

ri,o
φi,o(ri,o)

)]}

+ikW e−1
i,o

(
1

ri,o
− k2ri,o

)
ξi,o = 0, (21)

where r = R/h, and its subscripts retain the same designations as its dimensional
counterparts. The term ri,o appearing in the argument of a function signifies that the
function is to be evaluated at r = ri or r = ro depending on whether (20) is to be
evaluated at the inner or outer interface, and

D2 =
d2

dr2
, E−2 =

d2

dr2
− 1

r

d

dr
+ k2,

L =
d3

dr3
− 1

r

d2

dr2
−
(

1

r2
− k2

)
d

dr
,

Wei,o = ρ1,3W
2
mh/Si,o.

Wei,o is the Weber number associated with the inner or the outer interfaces. Equations
(15) and (16) are the no-slip conditions at the pipe wall. Equations (17) and (18)
are, respectively, the continuity of the radial and tangential components of the
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velocity at the interfaces. Equation (19) is the interfacial kinematic condition, (20)
and (21) are, respectively, the tangential and normal component of the dynamic
boundary condition. Moreover, we shall demand that the solution is bounded along
the cylindrical axis, i.e.

φ3(0) = Dφ3(0) = 0. (22)

3. Numerical solution
First, the flow domain of each fluid is mapped into a strip of thickness 2 by use of

the following linear transformations

yj = ajr + bj, (23)

where

a1 = 2/ri, b1 = −1,

a2 =
2

ri − r0 , b2 = −ri + ro

ri − r0 ,

a3 =
2

rw − ro , b3 = −rw + ro

rw − ro .
Hence,

r ∈ [0, ri] −→ y1 ∈ [−1, 1],

r ∈ [ri, ro] −→ y2 ∈ [1,−1],

r ∈ [r0, rw] −→ y3 ∈ [−1, 1],

Then we write φj as the finite sum of a convergent series as (Boyd 1989),

φj(yj) =

Mj∑
n=0

hjn(yj)φj(yjn), (24)

where yjn is the Gauss–Lobatto collocation point given by

yjn = cos

(
πn

Mj

)
,

and hjn is the Lagrange cardinal function

hjn(yj) =
(−1)n+1(1− y2

j )

CnM
2
j (yj − yjn)

d

dy
TMj

(yj), (25)

C0 = CMj
= 2, Cn = 1 for 1 6 n 6Mj − 1,

where TMj
(yj) is the Mjth order Chebyshev polynomial

TMj
(y) = cos(Mj cos−1 y) − 1 6 y 6 1.

Substitution of (24) into (14) and evaluating the resulting equation at Mj − 4 col-
location points we have M1 + M2 + M3 − 12 equations. We also have to satisfy the
17 equations from (15) to (22). Thus, we have a system of M1 + M2 + M3 + 5 = N
equations

Ax = ωBx (26)
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in the same number of unknowns

x = [(φ10, . . . , φ1M1
), (φ20, . . . , φ2M2

), (φ30, . . . , φ3M3
), ξi, ξo].

The expressions of the N ×N matrices A and B are given in the Appendix.

There are 10 flow parameters (Re, Fr, Wei, Weo, Q1, Q3, N̄1, N̄3, ri, rw), where
N̄1 = Q1N1 and N̄3 = Q3N3. Note that ro = ri + 1. The annular liquid shell possesses
two interfaces. Thus, it has two degrees of freedom, and the linear differential system
possesses two independent interfacial modes of solution. Unlike a two-dimensional
plane liquid sheet, the two modes are not exactly in phase or 180◦ out of phase, since
the two interfaces are not exactly symmetrical with respect to the midsection of the
annular sheet. However, they may be almost symmetrical if the curvature difference
is small. Hence, we call the mode which displaces the two interfaces almost in phase
the para-sinuous mode, and the mode which displaces the two interfaces 180◦ out
of phase the para-varicose mode; or sinuous and varicose modes for simplicity. For
purely temporal disturbances k is real, and if it is given together with the complete
set of the flow parameters, then the complex wave frequency ω can be solved from
(26) as the eigenvalue. The IMSL library routine GVLCG has been used to obtain
ω. We characterize the spatial–temporal disturbances of a given wavenunber kr for a
given set of flow parameters with the spatial amplification curves ωr = 0. There are
at least two such curves for a given set of flow parameters, in the case of convective
instability. One corresponds to the sinuous mode and the other to the varicose mode.
For each mode, we start with an initial guess of ki for a given kr , then solve for ωr
and ωi using the IMSL routine GVCCG. If ωr = 0, the guess was perfect, if ωr 6= 0,
we find ki by use of the Newton iteration method with a reduced value of |ωr|.
With the new ki and the original kr we update (ωr, ωi) by use of the IMSL routine
GVCCG. We repeat this procedure until the IMSL routine gives ωr = 0. This iterative
scheme requires a very close initial guess of ki for convergence to the amplification
curve ωr = 0. The close initial guess of ki is achieved as follows. First, we seek the
downstream-propagating convectively unstable branches. We start our search with
a negative ki in the (kr, ki)-plane. The image of the k with negative ki should be a
ω with positive ωr . Then, the causality condition that the disturbance vanishes as
t→ −∞ in z < 0 is satisfied. With the given k, we obtain ω with subroutine GVLCG
in the IMSL library. Two sets of (ωr, ωi) with ωr > 0 are found. We then increase ki
step by step until ωr changes sign. The value of ki which causes ωr to change sign
near to ωr = 0 is used as the initial guess for each mode. Once an accurate point
on the amplification curve ωr = 0 is obtained with the iteration method described
earlier, a sufficiently close point on the same curve can be obtained with the ki on
the neighbouring point without having to obtain the first guess of ki as described.
Similarly, the upstream branch ωr = 0 can be obtained by starting the initial guess
of ki with ki > 0. When the downstream and upstream branches touch each other in
the upper k-plane a saddle point of ω(k) is formed. The image of this saddle point
in the upper ω-plane is a pinch point with ωr > 0. When a pinch point singularity
appears, absolute instability results (Bers 1983; Briggs 1964).

The numbers of terms Mj retained in the series are systematically increased until
the obtained eigenvalues remain the same up to the third decimal point. To test
the possible syntax and computer program errors, the results for the special cases
included in the present problem are checked against the known results of axisymmetric
Poiseuille flow (Davey & Drazin 1969) and the cylindrical liquid jet in a concentric
pipe (Lin & Chen 1998).



Instability of an annular jet surrounded by a viscous gas 243

0.075

0.045

0.015

–0.015

–0.045

–0.075
0 1 2 3 4 5 6 7 8

kr

ki

Lin & Chen
Mi =20, Ml =50, Mo = 40
Mi =20, Ml =60, Mo =50

Figure 3. Amplification curve for a simple jet, Re = 1000, 1/Fr = 0.0001, Wei = 4761.9, We0 = 0.0,
Q−1

1 = 0.013, Q3 = 1.0, N̄−1
1 = 0.019, N̄3 = 1.0, ri = 1.0, ro = 5, rw = 10. Scaling I is used in this

calculation.

4. Results and discussion
The known results for a cylindrical liquid jet in a coaxial pipe can be recovered by

changing the core gas to a liquid and changing the liquid shell to the same gas as
the outer gas. For example, to recover the results in figure 3 of Lin & Chen (1998),
we put Q3 = 1, Q−1

1 = 0.0013, N̄3 = 1, We−1
o = 0, We−1

i = 4761.9, N̄−1
1 = 0.019,

ri = 1, ro = 5, rw = 10, Re = 1000 and Fr−1 = 0.0001. Note that the definition of the
Weber number here is the inverse of that in Lin & Chen. The solid curve in figure 3
shows the results of Lin & Chen, and the other two curves are obtained from the
present program with two different sets of Mj . The figure also serves to show how
the terms of the series expansion can be increased to improve the numerical accuracy.
The known results for the axisymmetric Poiseuille flow can also be recovered by
changing all three fluids to the same fluid. This can be achieved by putting Fr−1 = 0,
Q1 = Q3 = 1, N̄1 = N̄3 = 1, and We−1

i = We−1
o = 0. To compare with the results

of Davey & Drazin (1969) we put ri = 1, ro = 1.5, rw = 2, kr = 0.5, ki = 0 and
Re = 2500. Note that while Davey & Drazin used the pipe radius, we use ri to
normalize the distance. Thus, Re = 2500 and kr = 0.5 in figure 4 correspond to
their value of 5000 and 1, respectively. Davey & Drazin used the Galerkin method
to obtain the complex wave speed c = cr + ici = iω/kr . The comparison is excellent
for the three upper branches. However, we have not found the lower two branches
of Davey & Drazin for which a theoretical explanation is still lacking (Drazin &
Reid 1985). Instead, we find the central branch cr = 2

3
to extend beyond their lower

branches. Their two lower branches are most probably due to numerical inaccuracy
associated with the Galerkin method. Figure 4 also shows how the number of terms
Mj may be increased to improve the numerical accuracy. Sketches of sinuous and
varicose modes are given in figure 5. For encapsulation applications, the varicose
mode should be avoided, since the shell tends to pinch off at the location where
the core is the thickest. This will lead to part of the core material being uncovered.
Figure 6 gives the temporal growth rate ωr and the spatial growth rate ki as a function
of kr for the set of flow parameters shown in the caption. The values of Q1, Q3, N̄1
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Figure 5. Schematic of (a) symmetric and (b) antisymmetric disturbances for annular liquid sheet.
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Figure 6. Temporal and spatial growth rates, Re = 500, 1/Fr = 0.0, Wei = Weo = 50,
N̄1 = N̄3 = 0.018, Q1 = Q3 = 0.0013, ri = 10, rw = 21.
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Figure 7. Temporal and spatial growth rates, Re = 2000, Fr = 50 000, Wei = Weo = 200 000,
N̄1 = N̄3 = 0.018, Q1 = Q3 = 0.0013, ri = 10, rw = 21.

and N̄3 correspond to the case of a water annular jet enclosing air and surrounded
by air at room conditions. The two curves are qualitatively the same except that the
wavenumber corresponding to the maximum growth rates are smaller for the spatial
disturbances for the sinuous mode. The two curves for the varicose mode are almost
identical except near the cutoff wavenumber beyond which the amplification rates
become negative. Figure 7 gives a similar set of two amplification curves for the same
parameters as those given in figure 6, except that the Weber numbers are much larger.
For relatively large Weber numbers, the temporal and spatial amplification curves fall
almost on top of each other. A similar situation was encountered by Keller, Rubinow
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Figure 8. Convective instability, sinuous mode, Re = 500, 1/Fr = 0.0, Wei = Weo = 50,
N̄1 = N̄3 = 0.018, Q1 = Q3 = 0.0013, ri = 10, rw = 21.

& Tu (1973) in their analysis of a simple jet. The spatial amplification curves ωr = 0
in figures 6 and 7 can be approached from the lower half k-plane where ωr > 0
and ki < 0 without encountering a pinch point singularity in the complex ω-plane.
Therefore, the causality condition that initially no disturbances exist as t → −∞
and z → −∞ in the downstream region is satisfied. Moreover, ωi increases with kr
along the spatial amplification curves. Hence, these curves represent downstream-
propagating convectively unstable disturbances whose amplitude decays in time at a
given point in space, but grows without bound with respect to an observer travelling
with the disturbance group velocity (Briggs 1964; Bers 1983).

In some parameter space, the sinuous mode encounters in the k-plane a saddle-point
singularity. An example of the emergence of a saddle point is illustrated in figures 8
and 9. There are two branches of the spatial amplification curves ωr = 0 in figure 8.
The upper and lower branches can be reached from the upper and lower half k-
planes, respectively. Along the upper branch dωi/dkr < 0, and along the lower branch
dωi/dkr > 0. The lower branch represents the downstream-propagating convectively
unstable disturbance. The upper branch represents the upstream-propagating evanes-
cent waves. The saddle point in figure 8 does not prevent the deformation of the
Fourier integral counters for superposing all Fourier components of either upstream-
or downstream-propagating disturbances. As the Weber number is reduced from 50
given in the caption of figure 8 with the rest of the parameters fixed, the upper
and the lower branches move toward each other, and at a critical Weber number
they meet at a saddle point. The Weber number 45.0 in figure 9 slightly overshoots
the critical Weber number. Figure 9 shows that when the critical Weber number is
slightly exceeded, the upper and lower halves of the upper and the lower branch
remain connected as they split off from the saddle point at the critical Weber number
to form two new branches. The image of the saddle point in the k-plane is a pinch
point singularity in the complex ω-plane with ωr > 0. Exact locations of the saddle
points in the parameter space of ten dimensions is numerically tedious and expensive
to obtain. The appearance of a saddle point signals the occurrence of absolute insta-
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Figure 9. Absolute instability, sinuous mode, Re = 500, 1/Fr = 0.0, Wei = Weo = 45,
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75

60

45

30

15

0 200 400 600 800 1000 1200

Re

Wei

Convective instability

(Continuous encapsulation)

Absolute instability

(Encapsulation disrupted)

Q1=Q3= 0.0013
Q1=Q3= 0.0026
Q1=Q3= 0.013

Figure 10. The critical Weber number for absolute instability, 1/Fr = 0.0, Wei = Weo,
N̄1 = N̄3 = 0.018, ri = 10, rw = 21.

bility in a flow in which a disturbance grows unbounded with time as it spreads in
both the upstream and downstream directions.

Three curves, each with a given value of Q1 and Q3, which separate the parameter
space into convective and absolute instability are given in figure 10. The fixed
parameters are shown in the figure caption. Below each curve, the flow is absolutely
unstable. Above each curve, the flow is convectively unstable. In the parameter
space of absolute instability, the encapsulation by breaking an annular jet cannot
be achieved, since the disturbance will propagate upstream to interrupt the process.
However, in the convectively unstable regime, capsules can be formed if appropriate
measures are taken, as will be explained shortly. Note that the region of absolute
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Figure 11. The effects of the Weber number on the spatial disturbance growth rate of convective
instability Re = 500, 1/Fr = 0.0, N̄1 = N̄3 = 0.018, Q1 = Q3 = 0.0013, ri = 10, rw = 21. (a)
Para-sinuous mode. (b) Para-varicose mode.

instability, i.e. the region in which encapsulation is prohibited, increases with the
increases in the density changes across the interfaces. This trend is opposite to that
for the case of a simple jet in a pipe (O’Donnell, Chen & Lin 2001). The authors do
not yet have a physical explanation for this difference.

Figures 11(a) and 11(b) show the effect of the Weber number variation on the
rates of sinuous and varicose mode disturbances. For each Weber number set, the
varicose mode has a slightly larger cutoff wavenumber above which the disturbance
decays. Amplification curves of different Weber numbers intersect at point e for both
modes. For sinuous disturbances with wave numbers smaller than that corresponding
to point e, the amplification rate can be raised by decreasing the Weber number, by
increasing the surface tension for example. Hence, the capillary force is destabilizing
in this range of wavenumbers. The same conclusion applies to the varicose mode
except in a very small wavenumber range. In this range as well as in the range of kr
greater than that corresponding to point e of both modes, the amplification curve for
the larger Weber number is above that for the smaller one. Therefore, in these ranges
the capillary force becomes stabilizing. Yet the jet is unstable in these ranges up to
the cutoff wavenumber. Therefore, in these ranges the instability of both modes is
caused by forces other than capillary force. These forces will be discussed later. Note
that only in a very small range of wavenumber between the cutoff wavenumbers of
the two modes for each Weber number in figure 11, does the varicose mode dominate
over the sinuous mode. In almost all of the rest of the unstable wave spectrum, the
amplification rate of the sinuous mode is one to two orders of magnitude larger than
that of the varicose mode. However, a successful encapsulation is not easily achieved
for the parameter specified in the figure, even if we impart an external forcing
with frequencies corresponding to the wavenumbers in the range where the sinuous
mode dominates over the varicose mode. This is because the varicose mode, however
feeble, will still be excited together with the sinuous mode and this contaminates the
encapsulation process.

The example given in figure 11 is for the case of zero gravity. The occurrence
of the small range of wave spectrum, in which the undesirable varicose mode is
dominant at finite gravity, is shown in figure 12. The para-sinuous and para-varicose
mode amplification curves for Fr = 1000 intersect at point e. Beyond this point, the
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Figure 13. The effects of Froude number on the disturbance growth rate, Re = 2000,
Wei = Weo = 200 000, N̄1 = N̄3 = 0.018, Q1 = Q3 = 0.0013, ri = 2, rw = 13. (a) Para-sinuous mode.
(b) Para-varicose mode.

varicose mode dominates over the sinuous mode. However, when gravity is reduced to
zero, the dominance of the varicose mode is completely eliminated. Moreover, between
the cutoff wavenumbers of the varicose and sinuous modes, even the presence of the
varicose mode is completely eliminated. Thus, a sinuous disturbance of a chosen
wavelength can be isolated in this range of wavenumbers where the varicose mode is
stable, by imparting an external forcing with a frequency corresponding to the chosen
wavelength λ = 2πh/kr . Using the method of Rayleigh, we can estimate the radius of
a capsule by equating the volume of the capsule with the volume of the annular jet
of length λ from which the capsule is formed. This method of estimation gives the
capsule radius R to be R = [3πh(ri + h)2/2kr]

1/3.
It is clear from the results presented up to this point that a successful uniform

encapsulation is possible if (i) the process is carried out outside of the absolute
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N̄1 = N̄3 = 0.018, Q1 = Q3 = 0.0013, ri = 2, rw = 13, Weo = 20. (a) Para-sinuous mode. (b)
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instability domain in the parameter space, and (ii) if a monochromatic external
excitation is introduced in the wavenumber range where the varicose mode instability
is absent but the sinuous mode is convectively unstable. We define the parameter
space in which the above two conditions are satisfied to be the encapsulation domain.
In the remaining part of this paper, we discuss how the encapsulation domain can be
enlarged by varying different flow parameters. Figure 13 shows how the encapsulation
domain can be enlarged by reducing the Froude number.

Figure 14 shows that the encapsulation domain widens with increasing Re. Figure 15
and 16 show the effect of variations of Wei and Weo, respectively. Encapsulation
between kr = 1

3
and 1

2
without varicose mode interference is still possible. Figure 17

shows how the encapsulation domain can be widened by the use of less viscous gas
for the outer gas. Figure 18 shows that the encapsulation domain can be enlarged as
N1 is increased with N3 fixed. Thus, it is easier to encapsulate more viscous fluids.

Figure 19 shows how the encapsulation domain can be enlarged and the difference
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Figure 17. The effects of viscosity ratio N̄3, Re = 2000, Fr = 50 000, Wei = Weo = 200 000,
Q1 = Q3 = 0.0013, ri = 5, rw = 16, N̄1 = 0.018. (a) Para-sinuous mode. (b) Para-varicose mode.

between the sinuous and varicose mode amplification rates increased by use of a
larger pipe radius rw . Figure 20 shows that it is easier to encapsulate core fluid with
smaller diameter relative to the shell thickness, since the configuration has a larger
encapsulation domain. As rw is increased, the amplification rate of the para-sinuous
disturbance is increased in figure 19. On the other hand, the para-varicose disturbance
amplification is decreased. An increase in the inner radius has the completely opposite
effect, as shown in figure 20. It can be shown from the basic flow expression that
an increase in rw is accompanied by a thinning of the shear layer in the outer gas
and thickening of the shear layer in the inner gas core. An increase in ri has the
opposite effect on the interfacial shear strain rate. Hence, both figures 19 and 20
are the manifestation of the destabilizing effect of interfacial shear noted earlier by
Yih (1967), Hooper & Boyd (1983), Hinch (1984), Kelly et al. (1989), Tilley, Davis &
Bankoff (1994), Coward & Renardy (1996), and many others.

Figure 21 shows the effect of the gas density variation on the amplification rates.
The growth rate of both modes decreases as the gas density is increased. This trend
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Figure 18. The effects of viscosity ratio N̄1, Re = 2000, Fr = 50 000, Wei = Weo = 200 000,
Q1 = Q3 = 0.0013, ri = 5, rw = 16, N̄3 = 0.018. (a) Para-sinuous mode. (b) Para-varicose mode.
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Figure 19. The effects of pipe radius on the disturbance growth rate for both mode, Re = 2000,
Fr = 50 000, Wei = Weo = 200 000, N̄1 = N̄3 = 0.018, Q1 = Q3 = 0.0013, ri = 10. The upper three
curves are the para-sinuous mode; the lower three curves are the para-varicose mode.

is opposite to that found by Shen & Li (1996) who neglected the effects of the gas
viscosity. The trend of the effect cannot be reversed by reducing N̄1 and N̄3. In fact,
when N1 and N3 instead of N̄1 and N̄3 are fixed so that the effect of density is
decoupled from that of the viscosity, the same trend remains. The growth rate of the
sinuous mode remains one order of magnitude larger than that of the varicose mode
even when the gas density is increased by 100 times. Meanwhile, the amplification rate
of the varicose mode is hardly changed. When the density of the outer gas is fixed, the
amplification rates of both modes increase with the core gas density, although more
dramatically for the varicose mode, as shown in figure 22. As the core gas density
increases, the encapsulation domain becomes narrower. Thus, a wider range of drop
sizes is possible for lighter core fluids. On the other hand, for a given Q1, as shown in
figure 23, the encapsulation domain increases with increasing Q3, and hence the gas
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Figure 21. The effects of density ratio on the disturbance growth rate, Re = 1000, 1/Fr = 0.0,
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inertial force outside the annular shell can be promoted to increase the possible size
range.

5. Conclusions
The instability of an annular liquid shell with respect to spatio-temporal distur-

bances is investigated. The annulus is inherently unstable. It is susceptible to unstable
para-sinuous and para-varicose modes of convective instability. The amplification rate
of the para-sinuous mode is generally much larger. In a certain parameter space the
sinuous mode disturbance may cause the annulus to become absolutely unstable. The
transition Weber number below which the annulus is absolutely unstable and above
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Figure 22. The effects of density ratio Q1, Re = 2000, Fr = 50 000, Wei = Weo = 200 000,
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Figure 23. The effects of density ratio Q3, Re = 2000, Fr = 50 000, Wei = Weo = 200 000,
N̄1 = N̄3 = 0.018, ri = 5, rw = 16, Q1 = 0.0013. (a) Para-sinuous mode. (b) Para-varicose mode.

which the flow is convectively unstable is obtained as a function of the Reynolds
number, with the rest of the flow parameters held constant. It is shown that a suc-
cessful encapsulation is possible if the process is carried out outside the parameter
space of absolute instability which causes the disturbance to propagate upstream to
interrupt the continuous process. An excessive increase in interfacial tension, in the
hope of obtaining larger capsules, may lead to an interruption of the process by
entering into the parameter space of absolute instability. The convectively unstable
sinuous mode must be promoted and the varicose mode suppressed for a possible
encapsulation of a core material inside a uniform shell. The encapsulation process is
impossible in certain unfavourable parameter spaces in a narrow band of wavenum-
ber in which varicose mode instability dominates the sinuous mode. However, this
range of wavenumbers can be eliminated by proper choices of flow parameters, by
reducing the level of gravity, for example. There are 10 relevant flow parameters. It
is shown how these parameters may be varied to create a condition under which the
varicose mode is stable, but the sinuous mode is convectively unstable in a range of
wavenumbers. In this range, a monochromatic external forcing may be applied to
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amplify a selected sinuous mode disturbance to facilitate production of capsules of
uniform size and shell thickness.

It is shown that the capillary force stabilizes sinuous as well as varicose mode
disturbances of wavelength longer than certain transition wavelengths, but stabilizes
relatively short wavelength disturbances. The transitionwave number depends on the
flow parameters. Yet the short wavelength disturbances may remain convectively
unstable, and therefore their instability is caused by factors other than capillary force.
These factors include interfacial pressure and shear fluctuations, Reynolds stresses in
the three phase flows, viscous energy dissipation in the three fluids, and the work
done by the pressure and viscous stress fluctuation along the flow direction. The
quantitative relative importance of these factors can be determined only after a
comprehensive energy budget is obtained for a wide range of flow parameters along
the line of Lin & Chen (1998) who elucidated the physical mechanism for the case
of a simple jet based on an energy consideration. In depth explanation of physical
mechanisms involved in absolute and convective instability will be reported together
with experimental results in the near future. The possible domains of encapsulation
illustrated in this paper will have to be ascertained in the parameter spaces which
are actually encountered in the experiments. Extensions of the present analysis to the
problems of micro- and nano-encapsulations will find many applications in medical
and biological sciences (Benita 1996). It should be pointed out that the present theory
predicts the favourable conditions for the initiation of the encapsulation process. The
description of the final stage of capsule formation requires a full nonlinear theory.

Appendix. The Orr–Somerfeld system in the Chebyshev space
The derivatives in the Orr–Sommerfeld equation (14) can be transformed into the

Chebyshev space defined by (23) using the relations

d

dr
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d

dy
= aj

d

dy
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drp
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p
j

dp

dyp
(j = 1, 2, 3). (A 1)

Hence, the transformed Orr–Sommerfeld equation in y remains the same except that
the pth derivative in r in (14) must be replaced by (A 1). The same modification must
be made in the boundary conditions. Upon substitution of (25) into (14), we must
evaluate the derivatives of the cardinal function hjn(y) at the collocation points. Let
Dpj representing the matrix whose elements dpj,mn are defined by

d
p
j,mn =

dphjn
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|y=yj,m . (A 2)

The matrix D0
j is a unit matrix and the elements of matrix D1

j are given by (Boyd
1989)
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j are easily obtained by simple matrix multiplication
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The Orr–Sommerfeld equation evaluated at collocation points are{
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where

φj,n = φj(yj,n), rj,m = ajyj,m + bj,
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The boundary condition (15)–(22) can be written as
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2d
1
2,M2n

+

(
1

Re

2k2

r3,M3

+ ikw̄′2,M2n

)
d2

2,M2n

}
φ2,n −

{
N̄3

Re

(
a3

3d
3
3,M3n

− 1

r3,M3

a2
3d

2
3,M3n

)
−
[
N̄3

Re

(
1

r2
3,M3

− 3k2

)
+ ikQ3w̄3,M3

]
a1

3d
1
3,M3n

+

(
N̄3

Re

2k2

r3,M3

+ ikw̄′3,M3

)
d0

3,M3n

}
φ3,n

+ikWe−1
o

(
1

r3,M3

− r3,M3
k2

)
ξo = ω(a2d

1
2,M2n

φ2,n − Q3a3d
1
3,M3n

φ3,n). (A 16)

d0
1,M1n

φ1,n = 0. (A 17)

a1d
1
1,M1n

φ1,n = 0. (A 18)

Equations (A 4)–(A 18) constitute a system of (M1 + M2 + M3 + 17) algebraic equa-
tions. The (M1 + M2 + M3 + 5) unknown vector components are φ1,0, . . . , φ1,M1

, φ2,0,
φ2,1, . . . , φ2,M2

, φ3,0, φ3,1, . . . , φ3,M3
, ξi and ξo. Equation (A 4) comes from three 4th-order

ordinary differential equations. Each of these equations, results in Mj + 1 equations
only Mj − 3 of which are independent. Removing 4 equations from each set of gov-
erning equations, and adding 14 boundary conditions, we obtain our final system. We
remove equations with m = 0, 1,Mj − 1,Mj (j = 1, 2, 3) in (A 4). This is the so-called
Lanczos method (1958). The elements of the B and A matrix in (26) can be read off
from the coefficients of the unknown vector components. The B matrix involves only
terms with ω.
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